Package: mrf (via r-universe)

August 22, 2024

Type Package

Title Multiresolution Forecasting

Version 0.1.6 **Date** 2021-09-20

Maintainer Quirin Stier < research@quirin-stier.de>

Description Forecasting of univariate time series using feature extraction with variable prediction methods is provided. Feature extraction is done with a redundant Haar wavelet transform with filter h = (0.5, 0.5). The advantage of the approach compared to typical Fourier based methods is an dynamic adaptation to varying seasonalities. Currently implemented prediction methods based on the selected wavelets levels and scales are a regression and a multi-layer perceptron. Forecasts can be computed for horizon 1 or higher. Model selection is performed with an evolutionary optimization. Selection criteria are currently the AIC criterion, the Mean Absolute Error or the Mean Root Error. The data is split into three parts for model selection: Training, test, and evaluation dataset. The training data is for computing the weights of a parameter set. The test data is for choosing the best parameter set. The evaluation data is for assessing the forecast performance of the best parameter set on new data unknown to the model. This work is published in Stier, Q.; Gehlert, T.; Thrun, M.C. Multiresolution Forecasting for Industrial Applications. Processes 2021, 9, 1697.

<https://doi.org/10.3390/pr9101697>.

Imports limSolve, DEoptim, stats, forecast, monmlp, nnfor

Suggests knitr, rmarkdown

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

LazyData true

VignetteBuilder knitr

2 Contents

URL	https:/	//www.	deepbi	onics	.org
-----	---------	--------	--------	-------	------

 $\pmb{BugReports} \ \text{https://github.com/Quirinms/MRFR/issues}$

Repository https://quirinms.r-universe.dev

RemoteUrl https://github.com/quirinms/mrfr

RemoteRef HEAD

RemoteSha c84a61e9db8d59862553e4260cd2fa673c48ab52

Contents

Index

mrf-package
decomposition
entsoe
model_selection
mrf_elm_forecast
mrf_forecast
mrf_model_selection
$mrf_multi_step_forecast 1$
mrf_neuralnet_one_step_forecast
mrf_nnetar_forecast
mrf_one_step_forecast
mrf_regression_lsm_optimization
mrf_regression_one_step_forecast
mrf_requirement
mrf_rolling_forecasting_origin
mrf_train
multi_step
nested_cross_validation
neuralnet_one_step
onestep
prediction_scheme
regression_lsm_optimization
regression_one_step
rolling_window
rolling_window_single
training
wavelet_decomposition
wavelet_prediction_equation
wavelet_training_equations

44

mrf-package 3

mrf-package

Multiresolution Forecasting

Description

Forecasting of univariate time series using feature extraction with variable prediction methods is provided. Feature extraction is done with a redundant Haar wavelet transform with filter h = (0.5, 1)0.5). The advantage of the approach compared to typical Fourier based methods is an dynamic adaptation to varying seasonalities. Currently implemented prediction methods based on the selected wavelets levels and scales are a regression and a multi-layer perceptron. Forecasts can be computed for horizon 1 or higher. Model selection is performed with an evolutionary optimization. Selection criteria are currently the AIC criterion, the Mean Absolute Error or the Mean Root Error. The data is split into three parts for model selection: Training, test, and evaluation dataset. The training data is for computing the weights of a parameter set. The test data is for choosing the best parameter set. The evaluation data is for assessing the forecast performance of the best parameter set on new data unknown to the model. This work is published in Stier, Q.; Gehlert, T.; Thrun, M.C. Multiresolution Forecasting for Industrial Applications. Processes 2021, 9, 1697. https://doi.org/10.3390/pr9101697. The package consists of a multiresolution forecasting method using a redundant Haar wavelet transform based on the manuscript [Stier et al., 2021] which is currently in press. One-step and multi-step forecasts are computable with this method. Nested and non-nested cross validation is possible.

Details

Forecasting of univariate time series using feature extraction with variable prediction methods is provided. Feature extraction is done with a redundant Haar wavelet transform with filter h = (0.5, 0.5). The advantage of the approach compared to typical Fourier based methods is an dynamic adaptation to varying seasonalities. Currently implemented prediction methods based on the selected wavelets levels and scales are a regression and a multi-layer perceptron. Forecasts can be computed for horizon 1 or higher. Model selection is performed with an evolutionary optimization. Selection criterias are currently the AIC criterion, the Mean Absolute Error or the Mean Root Error. The data is split into three parts for model selection: Training, test, and evaluation dataset. The training data is for computing the weights of a parameter set. The test data is for choosing the best parameter set. The evaluation data is for assessing the forecast performance of the best parameter set on new data unknown to the model.

Package: mrf
Type: Package
Version: 0.1.4
Date: 2021-09-20

License: CC BY-NC-SA 4.0

Author(s)

Quirin Stier

4 decomposition

References

[Stier et al., 2021] Stier, Q.; Gehlert, T.; Thrun, M.C. Multiresolution Forecasting for Industrial Applications. Processes 2021, 9, 1697. https://doi.org/10.3390/pr9101697

decomposition

Redundant Haar Wavelet Decomposition

Description

This function decomposes a time series in its wavelet and smooth coefficients using the redundant Haar wavelet transform.

Usage

```
decomposition(UnivariateData, Aggregation = c(2, 4, 8, 16, 32))
```

Arguments

UnivariateData [1:n] Numerical vector with n time series values

Aggregation [1:Scales] Numerical vector of length 'Scales' carrying numbers whose index is

associated with the wavelet level. The numbers indicate the number of values

used for aggregation from the original time series.

Details

The resulting wavelet and smooth coefficients are stored in so called wavelet and smooth part levels. The smooth part level is created from the original times series by aggregation (average). This makes the times series in some sense smoother, hence the naming. Each individual smooth part level can be created from the original time series by aggregating over different number of values. The different smooth part levels are ordered, so that the number of values used for aggregation are ascending. A dyadic scheme is recommended (increasing sequences of the power of two). The dyadic scheme for 5 levels would require $agg_per_lvl = c(2, 4, 8, 16, 32)$. So the first smooth part level would be the average of two points of the original time series, the second smooth part level would be the average of four points, and so on. This averaging is applied asymmetrical. That means, that the result of the average of a sequence of points is obtained for the last point in time of that sequence. So each smooth part level starts with a certain offset, since no average can be obtained for the first particular points in time. The wavelet levels are the differences between the original time series and the smooth levels. The first wavelet level is the difference of the original time series and the first smooth part level. The second wavelet level is the difference of the first and second smooth part level and so on.

Value

List of

UnivariateData [1:n] Numerical vector with n time series values.

entsoe 5

WaveletCoefficients

[Scales, n] Matrix with 'Scales' many wavelet scales row-wise with n columns corresponding to the time domain of a time series.

SmoothCoefficients

[Scales, n] Matrix with 'Scales' many smooth approximation scales row-wise with n columns corresponding to the time domain of a time series.

Scales Number of wavelet levels.

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6:5–12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De-composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217–232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475–484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241–1251. doi:10.1109/TSMCB.2005.850182, 2005.

Examples

```
data(AirPassengers)
plot(AirPassengers, type = "1", col = "black")
dec_res = decomposition(as.vector(array(AirPassengers)), Aggregation = c(2,4))
plot(dec_res$SmoothCoefficients[2,4:length(dec_res$SmoothCoefficients[2,])],
type = "1", col = "blue")
lines(array(AirPassengers)[4:length(dec_res$SmoothCoefficients[2,])],
col = "black")
```

entsoe

Entsoe DataFrame containing Time Series

Description

Data from a European Network of Transmission System Operators for Electricity Accessed: 2020-08-20, 2019. Time series contains 3652 data points without missing values. Data describes electrict load for time range between 2006 and 2015

Usage

```
data(entsoe)
```

6 model_selection

Format

A DataFrame with 3652 rows and 2 columns

Source

Archive

Examples

```
data(entsoe)
data = entsoe$value
```

model_selection

Model Selection for Multiresolution Forecasts

Description

This function computes a model selection using a criterion (AIC, MRE).

Usage

```
model_selection(UnivariateData, Aggregation, Horizon = 14, Window = 365,
Method = "r", crit = "AIC", itermax = 1, lower_limit = 1, upper_limit = 2,
NumClusters = 1)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

Aggregation [1:Scales] Numerical vector carrying numbers whose index is associated with

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

Horizon Number indicating horizon for forecast from 1 to horizon.

Window Number indicating how many points are used for cross validation.

Method String indicating which method to use. Available methods: 'r' = Autoregression.

'nn' = Neural Network.

crit String indicating which criterion to use. Available criterion: AIC = Akaikes

Information Criterion. MRE = Mean Root Error.

itermax Number of iterations for evolutionary optimization method.

lower_limit Lower limit for coefficients selected for each level upper_limit Higher limit for coefficients selected for each level NumClusters Number of clusters used for parallel computing.

mrf_elm_forecast 7

Details

The evaluation function (optimization function) is built with a rolling forecasting origin (rolling_window function), which computes a h-step ahead forecast (for h = 1, ..., horizon) for window_size many steps. The input space is searched with an evolutionary optimization method. The deployed forecast method can be an autoregression or a neural network (multilayer perceptron with one hidden layer).

Value

Error [1:Window, 1:Horizon] Numerical Matrix with 'Window' many rows entries

indicating one time point with 'Horizon' many forecast errors.

Best [1:Scales+1] Numerical vector with integers associated with the best found num-

ber of coefficients per wavelet scale (1:Scales) and number of coefficients for the

smooth approximation level in the last entry.

Author(s)

Quirin Stier

References

Hyndman, R. and Athanasopoulos, G. Forecasting: principles and practice. OTexts, 3 edition. 2018.

Examples

```
data(entsoe)
model_selection(UnivariateData = entsoe$value, Aggregation = c(2,4), Horizon = 1,
Window = 1, Method = "r", crit = "AIC", itermax = 1, upper_limit = 1,
NumClusters = 1)
```

mrf_elm_forecast

Forecast with Extreme Learning Machines

Description

This function creates a one step forecast using a multi layer perceptron with one hidden Layer. The number of input is the sum of all coefficients chosen with the parameter CoefficientCombination. The CoefficientCombination parameter controls the number of coefficients chosen for each wavelet and smooth part level individually.

Usage

```
mrf_elm_forecast(UnivariateData, Horizon, Aggregation, Threshold="hard",
Lambda=0.05)
```

8 mrf_elm_forecast

Arguments

UnivariateData [1:n] Numerical vector with n values.

Horizon Number indicating horizon for forecast from 1 to horizon.

Aggregation [1:Scales] Numerical vector carrying numbers whose index is associated with

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

Threshold Character indicating if Thresholding is done on the wavelet decomposition or

not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates

no thresholding.

Lambda Numeric value indicating the threshold for computing a hard or soft threshold

on the wavelet decomposition.

Value

forecast Numerical value with one step forecast

Author(s)

Ouirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6,5-12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De- composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217-232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475-484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241-1251. doi:10.1109/TSMCB.2005.850182, 2005.

```
data(AirPassengers)
len_data = length(as.vector(array(AirPassengers)))
UnivariateData = as.vector(AirPassengers)[1:(len_data-1)]
Aggregation = c(2,4)
if(requireNamespace('nnfor', quietly = TRUE)){
forecast = mrf_elm_forecast(UnivariateData, Horizon=1, Aggregation)
true_value = array(AirPassengers)[len_data]
error = true_value - forecast
}
```

mrf_forecast 9

|--|

Description

Creates a multiresolution forecast for a given multiresolution model based on [Stier et al., 2021] which is currently in press. (mrf_train).

Usage

```
mrf_forecast(Model, Horizon=1)
```

Arguments

Model List containing model specifications from mrf_train().

Horizon Number indicating horizon for forecast from 1 to horizon.

Value

List of

Forecast [1:Horizon] Numerical vector with forecast of horizon according to its index.

Model List containing model specifications from mrf_train().

Author(s)

Quirin Stier

References

[Stier et al., 2021] Stier, Q., Gehlert, T. and Thrun, M. C.: Multiresolution Forecasting for Industrial Applications, Processess, 2021.

```
data(AirPassengers)
Data = as.vector(AirPassengers)
len_data = length(Data)
Train = Data[1:(len_data-2)]
Test = Data[(len_data-1):len_data]
# One-step forecast (Multiresolution Forecast)
model = mrf_train(Train)
one_step = mrf_forecast(model, Horizon=1)
Error = one_step$Forecast - Test[1]
# Multi-step forecast (Multiresolution Forecast)
# Horizon = 2 => Forecast with Horizon 1 and 2 as vector
model = mrf_train(Train, Horizon=2)
multi_step = mrf_forecast(model, Horizon=2)
Error = multi_step$Forecast - Test
```

10 mrf_model_selection

 ${\tt mrf_model_selection}$

Model selection for Multiresolution Forecasts

Description

Evaluates the best coefficient combination for a given aggregation scheme based on a rolling forecasting origin based on the manuscript [Stier et al., 2021] which is currently in press.

Usage

```
mrf_model_selection(UnivariateData, Aggregation, Horizon = 1, Window = 2,
Method = "r", crit = "AIC", itermax = 1, lower_limit = 1, upper_limit = 2,
NumClusters = 1, Threshold="hard", Lambda=0.05)
```

Arguments

UnivariateData	[1:n] Numerical vector with n values.
Aggregation	[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series.
Horizon	Number indicating horizon for forecast from 1 to horizon.
Window	Number indicating how many points are used for cross validation.
Method	String indicating which method to use. Available methods: 'r' = Autoregression. 'nn' = Neural Network. 'elm' = Extreme Learning Machine. 'nnetar' = forecast::nnetar. Default: Method="r".
crit	String with criterion. Available criterions: "AIC" = Akaikes Info. Crit. "MAE" = Mean Abs. Error. "MRE" = Mean Root Error. Default: crit = "AIC".
itermax	Number of iterations used in the differential evolutionary optimization algorithm. Default: $itermax = 1$.
lower_limit	[1:Scales+1] Numeric vector: Lower limit for coefficients selected for each level.
upper_limit	[1:Scales+1] Numeric vector: Higher limit for coefficients selected for each level.
NumClusters	Number of clusters used for parallel computing. Default: NumClusters = 1.
Threshold	Character indicating if Thresholding is done on the wavelet decomposition or not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates no thresholding.
Lambda	Numeric value indicating the threshold for computing a hard or soft threshold on the wavelet decomposition.

Details

The evaluation function (optimization function) is built with a rolling forecasting origin (rolling_window function), which computes a h-step ahead forecast (for h = 1, ..., horizon) for 'Window' many steps. The input space is searched with an evolutionary optimization method. The search is restricted to one fixed aggregation scheme (parameter: 'Aggregation'). The deployed forecast method can be an autoregression or a neural network (multilayer perceptron with one hidden layer).

Value

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme. Best combination of coefficients found by the model selection algorithm.

Aggregation

[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series. Best Aggregation scheme found by the model selection algorithm.

Author(s)

Quirin Stier

References

[Stier et al., 2021] Stier, Q., Gehlert, T. and Thrun, M. C.: Multiresolution Forecasting for Industrial Applications, Processess, 2021.

Examples

```
data(entsoe)
UnivariateData = entsoe$value
Aggregation = c(2,4)
res = mrf_model_selection(UnivariateData, Aggregation, Horizon = 1, Window = 2,
Method = "r", crit = "AIC", itermax = 1, lower_limit = 1, upper_limit = 2,
NumClusters = 1)
BestCoefficientCombination = res$CoefficientCombination
```

```
mrf_multi_step_forecast
```

Multiresolution Forecast

Description

This function creates a multi step forecast for all horizons from 1 to steps based on the manuscript [Stier et al., 2021] which is currently in press. The deployed forecast method can be an autoregression or a neural network (multilayer perceptron with one hidden layer). Multi step forecasts are computed recursively.

Usage

```
mrf_multi_step_forecast(UnivariateData, Horizon, Aggregation,
CoefficientCombination=NULL, Method = "r", Threshold="hard", Lambda=0.05)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

Horizon Number indicating horizon for forecast from 1 to horizon.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific

scheme.

Aggregation [1:Scales] Numerical vector carrying numbers whose index is associated with

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

Method String indicating which method to use. Available methods: 'r' = Autoregres-

sion. 'nn' = Neural Network. 'elm' = Extreme Learning Machine. 'nnetar' =

forecast::nnetar. Default: Method="r".

Threshold Character indicating if Thresholding is done on the wavelet decomposition or

not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates

no thresholding.

Lambda Numeric value indicating the threshold for computing a hard or soft threshold

on the wavelet decomposition.

Value

List of

multistep [1:Horizon] Numerical vector with forecast of horizon according to its index.

Author(s)

Quirin Stier

References

[Stier et al., 2021] Stier, Q., Gehlert, T. and Thrun, M. C.: Multiresolution Forecasting for Industrial Applications, Processess, 2021.

Examples

```
data(AirPassengers)
len_data = length(array(AirPassengers))
UnivariateData = as.vector(AirPassengers)[1:(len_data-1)]
# One-step forecast (Multiresolution Forecast)
one_step = mrf_multi_step_forecast(UnivariateData = UnivariateData,
                                    Horizon = 2,
                                    CoefficientCombination = c(1,1,1),
                                    Aggregation = c(2,4),
                                    Method="r")
# Multi-step forecast (Multiresolution Forecast)
# Horizon = 2 => Forecast with Horizon 1 and 2 as vector
multi_step = mrf_multi_step_forecast(UnivariateData = UnivariateData,
                                      Horizon = 2,
                                      CoefficientCombination = c(1,1,1),
                                      Aggregation = c(2,4),
                                      Method="r")
```

```
mrf_neuralnet_one_step_forecast
```

One Step Forecast with Neural Network

Description

This function creates a one step forecast using a multi layer perceptron with one hidden Layer. The number of input is the sum of all coefficients chosen with the parameter CoefficientCombination. The CoefficientCombination parameter controls the number of coefficients chosen for each wavelet and smooth part level individually.

Usage

```
mrf_neuralnet_one_step_forecast(UnivariateData, CoefficientCombination,
Aggregation, Threshold="hard", Lambda=0.05)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

Aggregation

[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series.

Threshold Character indicating if Thresholding is done on the wavelet decomposition or

not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates

no thresholding.

Lambda Numeric value indicating the threshold for computing a hard or soft threshold

on the wavelet decomposition.

Value

forecast Numerical value with one step forecast

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6,5-12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De- composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217-232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475-484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241-1251. doi:10.1109/TSMCB.2005.850182, 2005.

mrf_nnetar_forecast 15

mrf_nnetar_forecast Fore

Forecast with nnetar

Description

This function creates a one step forecast using a multi layer perceptron with one hidden Layer. The number of input is the sum of all coefficients chosen with the parameter CoefficientCombination. The CoefficientCombination parameter controls the number of coefficients chosen for each wavelet and smooth part level individually.

Usage

```
mrf_nnetar_forecast(UnivariateData, Horizon, Aggregation, Threshold="hard",
Lambda=0.05)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

Horizon Number indicating horizon for forecast from 1 to horizon.

Aggregation [1:Scales] Numerical vector carrying numbers whose index is associated with

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

Threshold Character indicating if Thresholding is done on the wavelet decomposition or

not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates

no thresholding.

Lambda Numeric value indicating the threshold for computing a hard or soft threshold

on the wavelet decomposition.

Value

forecast Numerical value with one step forecast

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6,5-12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De- composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217-232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475-484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241-1251. doi:10.1109/TSMCB.2005.850182, 2005.

Examples

```
data(AirPassengers)
len_data = length(as.vector(array(AirPassengers)))
UnivariateData = as.vector(AirPassengers)[1:(len_data-1)]
Aggregation = c(2,4)
if(requireNamespace('nnfor', quietly = TRUE)){
forecast = mrf_nnetar_forecast(UnivariateData, Horizon=1, Aggregation)
true_value = array(AirPassengers)[len_data]
error = true_value - forecast
```

mrf_one_step_forecast mrf_one_step_forecast Step Forecast

Description

This function creates a one step forecast using the multiresolution forecasting framework based on the manuscript [Stier et al., 2021] which is currently in press.

Usage

```
mrf_one_step_forecast(UnivariateData, Aggregation,
CoefficientCombination=NULL,
Method="r", Threshold="hard", Lambda=0.05)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific

scheme.

Aggregation [1:Scales] Numerical vector carrying numbers whose index is associated with

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

Method String indicating which method to use. Available methods: 'r' = Autoregres-

sion. 'nn' = Neural Network. 'elm' = Extreme Learning Machine. 'nnetar' =

forecast::nnetar. Default: Method="r".

Threshold Character indicating if Thresholding is done on the wavelet decomposition or

not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates

no thresholding.

Lambda Numeric value indicating the threshold for computing a hard or soft threshold

on the wavelet decomposition.

Value

forecast Numerical value with one step forecast

Author(s)

Quirin Stier

References

[Stier et al., 2021] Stier, Q., Gehlert, T. and Thrun, M. C.: Multiresolution Forecasting for Industrial Applications, Processess, 2021.

Examples

```
data(AirPassengers)
len_data = length(array(AirPassengers))
UnivariateData = as.vector(AirPassengers)[1:(len_data-1)]
forecast = mrf_one_step_forecast(UnivariateData=UnivariateData,
CoefficientCombination=c(1,1,1), Aggregation=c(2,4))
true_value = array(AirPassengers)[len_data]
error = true_value - forecast
```

```
mrf_regression_lsm_optimization
```

Least Square Method for Regression

Description

This function computes the weights for the autoregression depending on the given wavelet decomposition. It uses ordinary least square method for optimizing a linear equation system.

Usage

```
mrf_regression_lsm_optimization(points_in_future, lsmatrix)
```

Arguments

points_in_future

n many values of the time series, for which there is an equation from a prediction

scheme.

1smatrix Matrix carrying predictive equations associated with a specific value of the time

series.

Value

List of

weights

Array of weights carrying the solution for a matrix problem, which was solves with ordinary least squares.

Author(s)

Ouirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6,5-12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De- composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217-232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475-484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241-1251. doi:10.1109/TSMCB.2005.850182, 2005.

```
data(AirPassengers)
len_data = length(array(AirPassengers))
CoefficientCombination = c(1,1,1)
Aggregation = c(2,4)
UnivariateData = as.vector(AirPassengers)
# Decomposition
dec_res <- wavelet_decomposition(UnivariateData, Aggregation)</pre>
# Training
trs_res <- wavelet_training_equations(UnivariateData,</pre>
                                       dec_res$WaveletCoefficients,
                                       dec_res$SmoothCoefficients,
                                       dec_res$Scales,
                                       CoefficientCombination, Aggregation)
arr_future_points = trs_res$points_in_future
matrix = trs_res$lsmatrix
# Optimization method
weights = mrf_regression_lsm_optimization(arr_future_points, matrix)
scheme = wavelet_prediction_equation(dec_res$WaveletCoefficients,
dec_res$SmoothCoefficients, CoefficientCombination, Aggregation)
forecast = weights
```

mrf_regression_one_step_forecast

One Step Forecast with Regression

Description

This function creates a one step forecast using an autoregression method. The ccps parameter controls the number of coefficients chosen for each wavelet and smooth part level individually.

Usage

```
mrf_regression_one_step_forecast(UnivariateData, CoefficientCombination,
Aggregation, Threshold="hard", Lambda=0.05)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

[1:Scales] Numerical vector carrying numbers whose index is associated with Aggregation

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

Threshold Character indicating if Thresholding is done on the wavelet decomposition or

> not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates

no thresholding.

Lambda Numeric value indicating the threshold for computing a hard or soft threshold

on the wavelet decomposition.

Value

forecast Numerical value with one step forecast

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6,5-12, 1998.

20 mrf_requirement

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De-composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217-232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475-484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241-1251. doi:10.1109/TSMCB.2005.850182, 2005.

Examples

mrf_requirement

Multiresolution Forecast Requirements

Description

Computes requirements for given model using insights of various published papers and the manuscript [Stier et al., 2021] which is currently in press.

Usage

```
mrf_requirement(UnivariateData, CoefficientCombination, Aggregation)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

Aggregation

[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series.

Value

List of

MinLen Integer minimum required length for model.

StartTraining Integer indicating the index of time series at which the training equations can be

built up.

NumberWeights Number of weights required for building model.

NumberEquations

Number of equations which can be built with given data.

Author(s)

Quirin Stier

References

[Stier et al., 2021] Stier, Q., Gehlert, T. and Thrun, M. C.: Multiresolution Forecasting for Industrial Applications, Processess, 2021.

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6,5-12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De-composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217-232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475-484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241-1251. doi:10.1109/TSMCB.2005.850182, 2005.

Examples

```
data(entsoe)
UnivariateData = entsoe$value
mrf_requirement(UnivariateData, c(2,3,4), c(2,4))
```

```
{\tt mrf\_rolling\_forecasting\_origin}
```

Rolling forecasting origin for Multiresolution Forecasts

Description

This function computes a rolling forecasting origin for one- or multi-step forecasts with a specific method based on the manuscript [Stier et al., 2021] which is currently in press. Multi-step forecasts are computed recursively with the one step forecast method.

Usage

```
mrf_rolling_forecasting_origin(UnivariateData, Aggregation,
CoefficientCombination=NULL, Horizon = 2, Window = 3, Method = "r",
NumClusters = 1,
Threshold="hard", Lambda=0.05)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific

scheme.

Aggregation [1:Scales] Numerical vector carrying numbers whose index is associated with

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

Horizon Number indicating horizon for forecast from 1 to horizon.

Window Number indicating how many points are used for cross validation.

Method String indicating which method to use. Available methods: 'r' = Autoregres-

sion. 'nn' = Neural Network. 'elm' = Extreme Learning Machine. 'nnetar' =

forecast::nnetar. Default: Method="r".

NumClusters Number of clusters used for parallel computing.

Threshold Character indicating if Thresholding is done on the wavelet decomposition or

not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates

no thresholding.

Lambda Numeric value indicating the threshold for computing a hard or soft threshold

on the wavelet decomposition.

Details

Thus, h-step forecast for h = 1,..., horizon for window_size many steps can be computed. The forecasting method can be an autoregression or a neural network (multilayer perceptron). The CoefficientCombination parameter controls the number of coefficients chosen for each wavelet and smooth part level individually. The NumClusters parameter determines the number of cluster used for parallel computation. NumClusters = 1 performs a non parallel version. NumClusters is constrained by the maximum number of clusters available minus one to prevent the machine to be overchallenged.

Value

List of

Error [1:Window,1:Horizon] Numerical Matrix with 'Window' many row entries in-

dicating one time point with 'Horizon' many forecast errors.

Forecast [1:Window,1:Horizon] Numerical Matrix with 'Window' many row entries in-

dicating one time point with 'Horizon' many forecasts.

mrf_train 23

Author(s)

Quirin Stier

References

[Stier et al., 2021] Stier, Q.,Gehlert, T. and Thrun, M. C.: Multiresolution Forecasting for Industrial Applications, Processess, 2021.

Examples

mrf_train

Multiresolution Forecast

Description

Creates a multiresolution forecast model which can be used for forecasting with method 'mrf_forecast' based on the manuscript [Stier et al., 2021] which is currently in press.

Usage

```
mrf_train(Data, Horizon=1, Aggregation="auto", Method = "r",
TimeSteps4ModelSelection=2, crit="AIC", InSample=FALSE, Threshold="hard",
Lambda=0.05, NumClusters=1, itermax=1)
```

Arguments

Data	[1:n] Numerical vector with n values from the training data.
Horizon	Number indicating forecast horizon. Horizon = 1 means one-step forecast and Horizon > 1 means a one-step forecast and all multi-step forecasts from horizon 2 to 'Horizon'. Default: Horizon = 1.
Aggregation	[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series. Default: Aggregation = "auto".
Method	String indicating which method to use. Available methods: 'r' = Autoregression. 'nn' = Neural Network. 'elm' = Extreme Learning Machine. 'nnetar' = forecast::nnetar. Default: Method="r".

24 mrf_train

TimeSteps4ModelSelection

Number of time steps of data (newest part) on which a model selection is per-

formed. Default: TimeSteps4ModelSelection = 2.

crit String with criterion. Available criterions: "AIC" = Akaikes Info. Crit. "MAE"

= Mean Abs. Error. "MRE" = Mean Root Error. Default: crit = "AIC".

InSample Boolean, deciding if in-sample-forecast based on rolling forecasting origin is

computed or not. TRUE = Computation of in-sample-forecast. FALSE = No

computation. Default: InSample = FALSE

Threshold Character indicating if Thresholding is done on the wavelet decomposition or

not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates

no thresholding.

Lambda Numeric value indicating the threshold for computing a hard or soft threshold

on the wavelet decomposition.

NumClusters Number of clusters used for parallel computing. Default: NumClusters = 1.

itermax Number of iterations used in the differential evolutionary optimization algo-

rithm. Default: itermax = 1.

Value

List with

Data [1:n] Numerical vector with n values from the training data.

Method String indicating which method to use.

Aggregation [1:Scales] Numerical vector carrying numbers whose index is associated with

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific

scheme.

Horizon Number indicating forecast horizon. Horizon = 1 means one-step forecast and

Horizon > 1 means a one-step forecast and all multi-step forecasts from horizon

2 to 'Horizon'.

ModelError [1:TimeSteps4ModelSelection, 1:Horizon] Numerical matrix with one-/multi-

steps in columns and the time steps rowwise. The error is according to the scheme of a rolling forecasting origin. The length depends on the minimum required length for constructing the wavelet model and the length of data. The newer part of the data is used for the model fit truncating the oldest data accord-

ing to the minimum required length for constructing the model.

ModelMAE Integer: Mean Absolute Error (MAE) computed for the in-sample-forecast re-

sulting from a rolling forecasting origin.

Author(s)

Quirin Stier

multi_step 25

References

[Stier et al., 2021] Stier, Q., Gehlert, T. and Thrun, M. C.: Multiresolution Forecasting for Industrial Applications, Processess, 2021.

Examples

```
data(AirPassengers)
Data = as.vector(AirPassengers)
len_data = length(Data)
Train = Data[1:(len_data-2)]
Test = Data[(len_data-1):len_data]
# One-step forecast (Multiresolution Forecast)
model = mrf_train(Train)
one_step = mrf_forecast(model, Horizon=1)
Error = one_step$Forecast - Test[1]
# Multi-step forecast (Multiresolution Forecast)
# Horizon = 2 => Forecast with Horizon 1 and 2 as vector
model = mrf_train(Train, Horizon=2)
multi_step = mrf_forecast(model, Horizon=2)
Error = multi_step$Forecast - Test
```

multi_step

Multi Step Forecast

Description

This function creates a multi step forecast for all horizons from 1 to steps. The deployed forecast method can be an autoregression or a neural network (multilayer perceptron with one hidden layer). Multi step forecasts are computed recursively.

Usage

multi_step(UnivariateData, Horizon, CoefficientCombination, Aggregation, Method = "r")

Arguments

UnivariateData [1:n] Numerical vector with n values.

Horizon Number indicating horizon for forecast from 1 to horizon.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific

scheme.

Aggregation [1:Scales] Numerical vector carrying numbers whose index is associated with

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

Method String indicating which method to use. Available methods: 'r' = Autoregression.

'nn' = Neural Network.

Value

List of

multistep [1:Horizon] Numerical vector with forecast of horizon according to its index.

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6:5–12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De-composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217–232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475–484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241–1251. doi:10.1109/TSMCB.2005.850182, 2005.

Examples

```
data(AirPassengers)
len_data = length(array(AirPassengers))
multistep = multi_step(as.vector(AirPassengers)[1:(len_data-1)], 2, c(1,1,1), c(2,4), Method="r")
```

nested_cross_validation

Nested cross validation for Multiresolution Forecasts

Description

This function computes a nested cross validation (with the rolling forecasting origin). The data is split into 3 datasets: training, test and evaluation dataset. The best model is selected on the test and its performance is measured on the evaluation dataset.

Usage

```
nested_cross_validation(UnivariateData, Horizon=14, EvaluationLength=2, TestLength=2,
Method = "r", MultivariateData=NULL, NumMV=1, NumClusters = 1)
```

nested_cross_validation 27

Arguments

UnivariateData [1:n] Numerical vector with n values.

Horizon Number indicating horizon for forecast from 1 to horizon.

EvaluationLength

Number indicating how many points are used for cross validation for the evalu-

ation dataset.

TestLength Number indicating how many points are used for cross validation for the test

dataset

Method String indicating which method to use. Available methods: 'r' = Autoregression.

'nn' = Neural Network.

MultivariateData

Not implemented yet.

NumMV Not implemented yet.

Details

The evaluation function (optimization function) is built with a rolling forecasting origin (rolling_window function), which computes a h-step ahead forecast (for h = 1, ..., horizon) for window_size many steps. The input space is searched with an evolutionary optimization method. The deployed forecast method can be an autoregression or a neural network (multilayer perceptron with one hidden layer).

Value

Best [1:Scales+1] Numerical vector with integers associated with the best found num-

ber of coefficients per wavelet scale (1:Scales) and number of coefficients for the

smooth approximation level in the last entry.

Error [1:Window, 1:Horizon] Numerical Matrix with 'Window' many rows entries

indicating one time point with 'Horizon' many forecast errors.

Forecast [1:Window, 1:Horizon] Numerical Matrix with 'Window' many rows entries

indicating one time point with 'Horizon' many forecasts.

Author(s)

Quirin Stier

References

Hyndman, R. and Athanasopoulos, G. Forecasting: principles and practice. OTexts, 3 edition. 2018.

```
data(entsoe)
res = nested_cross_validation(entsoe$value, Horizon = 2, EvaluationLength=2,
TestLength=2, Method="r", MultivariateData=NULL, NumMV=1, NumClusters=1)
BestCoefficientCombination = res$Best
Error = res$Error
```

28 neuralnet_one_step

Forecast = res\$Forecast

neuralnet_one_step

One Step Forecast with Neural Network

Description

This function creates a one step forecast using a multi layer perceptron with one hidden Layer. The number of input is the sum of all coefficients chosen with the parameter CoefficientCombination. The CoefficientCombination parameter controls the number of coefficients chosen for each wavelet and smooth part level individually.

Usage

neuralnet_one_step(UnivariateData, CoefficientCombination, Aggregation)

Arguments

UnivariateData [1:n] Numerical vector with n values.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

Aggregation

[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series.

Value

forecast

Numerical value with one step forecast

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6:5–12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De-composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217–232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475–484. doi:10.1016/S0167-9236(03)00092-7, 2004.

29 onestep

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241–1251. doi:10.1109/TSMCB.2005.850182, 2005.

Examples

```
data(AirPassengers)
len_data = length(array(AirPassengers))
forecast = neuralnet_one_step(as.vector(AirPassengers)[1:(len_data-1)], c(1,1,1), c(2,4))
true_value = array(AirPassengers)[len_data]
error = true_value - forecast
```

onestep

One Step Forecast

Description

This function creates a one step forecast using the multiresolution forecasting framework.

Usage

```
onestep(UnivariateData, CoefficientCombination, Aggregation, Method="r")
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

[1:Scales] Numerical vector carrying numbers whose index is associated with Aggregation

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

Method String indicating which method to use. Available methods: 'r' = Autoregression.

'nn' = Neural Network.

Value

forecast

Numerical value with one step forecast

Author(s)

Quirin Stier

30 prediction_scheme

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6:5–12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De- composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217–232. doi:10.1142/S0219691303000153, 2003

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475–484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241–1251. doi:10.1109/TSMCB.2005.850182, 2005.

Examples

```
data(AirPassengers)
len_data = length(array(AirPassengers))
forecast = onestep(as.vector(AirPassengers)[1:(len_data-1)], c(1,1,1), c(2,4))
true_value = array(AirPassengers)[len_data]
error = true_value - forecast
```

prediction_scheme

One Step Forecast with Regression

Description

This function delivers the required wavelet and smooth coefficients from the decomposition based on a prediction scheme.

Usage

```
prediction_scheme(WaveletCoefficients, SmoothCoefficients,
CoefficientCombination, Aggregation)
```

Arguments

WaveletCoefficients

[Scales, n] Matrix with 'Scales' many wavelet scales row-wise with n columns corresponding to the time domain of a time series.

SmoothCoefficients

[Scales, n] Matrix with 'Scales' many smooth approximation scales row-wise with n columns corresponding to the time domain of a time series.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

prediction_scheme 31

Aggregation

[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series.

Value

future_point Numerical value carrying one step forecast.

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6:5–12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De- composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217–232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475–484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241–1251. doi:10.1109/TSMCB.2005.850182, 2005.

```
data(AirPassengers)
len_data = length(array(AirPassengers))
ccps = c(1,1,1)
agg_per_lvl = c(2,4)
# Decomposition
dec_res <- decomposition(as.vector(AirPassengers), Aggregation = agg_per_lvl)</pre>
# Training
trs_res <- training(dec_res$UnivariateData, dec_res$WaveletCoefficients,</pre>
dec_res$SmoothCoefficients,
dec_res$Scales, ccps, agg_per_lvl)
arr_future_points = trs_res$points_in_future
matrix = trs_res$lsmatrix
# Optimization method
weights = regression_lsm_optimization(arr_future_points, matrix)
# Forecast
scheme = prediction_scheme(dec_res$WaveletCoefficients,
dec_res$SmoothCoefficients, ccps, agg_per_lvl)
forecast = weights
```

regression_lsm_optimization

Least Square Method for Regression

Description

This function computes the weights for the autoregression depending on the given wavelet decomposition. It uses ordinary least square method for optimizing a linear equation system.

Usage

regression_lsm_optimization(points_in_future, lsmatrix)

Arguments

points_in_future

n many values of the time series, for which there is an equation from a prediction

scheme.

lsmatrix Matrix carrying predictive equations associated with a specific value of the time

series.

Value

List of

weights Array of weights carrying the solution for a matrix problem, which was solves

with ordinary least squares.

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6:5–12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De-composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217–232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475–484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241–1251. doi:10.1109/TSMCB.2005.850182, 2005.

regression_one_step 33

Examples

```
data(AirPassengers)
len_data = length(array(AirPassengers))
ccps = c(1,1,1)
agg_per_lvl = c(2,4)
# Decomposition
dec_res <- decomposition(as.vector(AirPassengers), Aggregation = agg_per_lvl)</pre>
# Training
trs_res <- training(dec_res$UnivariateData, dec_res$WaveletCoefficients,</pre>
dec_res$SmoothCoefficients,
dec_res$Scales, ccps, agg_per_lvl)
arr_future_points = trs_res$points_in_future
matrix = trs_res$lsmatrix
# Optimization method
weights = regression_lsm_optimization(arr_future_points, matrix)
scheme = prediction_scheme(dec_res$WaveletCoefficients,
dec_res$SmoothCoefficients, ccps, agg_per_lvl)
forecast = weights
```

regression_one_step

One Step Forecast with Regression

Description

This function creates a one step forecast using an autoregression method. The ccps parameter controls the number of coefficients chosen for each wavelet and smooth part level individually.

Usage

```
regression\_one\_step(UnivariateData,\ CoefficientCombination,\ Aggregation)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

Aggregation

[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series.

Value

forecast

Numerical value with one step forecast

34 rolling_window

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6:5–12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De-composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217–232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475–484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241–1251. doi:10.1109/TSMCB.2005.850182, 2005.

Examples

```
data(AirPassengers)
len_data = length(as.vector(array(AirPassengers)))
forecast = regression_one_step(as.vector(AirPassengers)[1:(len_data-1)], c(1,1,1), c(2,4))
```

rolling_window

Rolling forecasting origin for Multiresolution Forecasts

Description

This function computes a rolling forecasting origin for one- or multi-step forecasts with a specific method. Multi step forecasts are computed recursively with the one step forecast method.

Usage

```
rolling_window(UnivariateData, CoefficientCombination, Aggregation, Horizon = 2,
Window = 3, Method = "r", NumClusters = 1)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

rolling_window 35

Aggregation [1:Scales] Numerical vector carrying numbers whose index is associated with

the wavelet level. The numbers indicate the number of time in points used for

aggregation from the original time series.

Horizon Number indicating horizon for forecast from 1 to horizon.

Window Number indicating how many points are used for cross validation.

Method String indicating which method to use. Available methods: 'r' = Autoregression.

'nn' = Neural Network.

NumClusters Number of clusters used for parallel computing.

Details

Thus, h-step forecast for h = 1,..., horizon for window_size many steps can be computed. The forecasting method can be an autoregression or a neural network (multilayer perceptron). The CoefficientCombination parameter controls the number of coefficients chosen for each wavelet and smooth part level individually. The NumClusters parameter determines the number of cluster used for parallel computation. NumClusters = 1 performs a non parallel version. NumClusters is constrained by the maximum number of clusters available minus one to prevent the machine to be overchallenged.

Value

List of

Error [1:Window,1:Horizon] Numerical Matrix with 'Window' many row entries in-

dicating one time point with 'Horizon' many forecast errors.

Forecast [1:Window,1:Horizon] Numerical Matrix with 'Window' many row entries in-

dicating one time point with 'Horizon' many forecasts.

Author(s)

Quirin Stier

References

Hyndman, R. and Athanasopoulos, G. Forecasting: principles and practice. OTexts, 3 edition. 2018.

rolling_window_single Rolling Window for Multiresolution Forecasts

Description

This function creates a single step for a rolling forecasting origin for a specifc one step forecast method. Multi step forecasts are computed recursively with the one step forecast method. Thus, h-step forecast for h = 1,..., horizon for window_size many steps can be computed. The forecasting method can be an autoregression or a neural network (multilayer perceptron). The ccps parameter controls the number of coefficients chosen for each wavelet and smooth part level individually.

Usage

```
rolling_window_single(
    i,
    data,
    ccps,
    agg_per_lvl,
    horizon = 14,
    window_size = 365,
    method = "r"
)
```

Arguments

i number indicating index for parallel computation.

data Time series with n values.

ccps Vector with numbers which are associated with wavelet and smooth levels from

decomposition. The last number is associated with the smooth part level. The preceding numbers are associated with the wavelet levels which are ordered increasingly. Each number determines the number of coefficient used per level.

The coefficient selection follows a fixed scheme.

agg_per_lvl Vector carrying numbers whose index is associated with the wavelet level. The

numbers indicate the number of time in points used for aggregation from the

original time series.

horizon Number indicating horizon for forecast from 1 to horizon.

window_size Number indicating how many points are used to create cross validation.

method String indicating which method to use (r = Autoregression, nn = Neural Net-

work).

Value

List of parameter with a 2D matrix of the forecast error.

Author(s)

Quirin Stier

training 37

training

Generic Training Scheme for wavelet framework

Description

This function computes the input for the training phase required for one step forecasts. This computational step is required for all one step forecast procedures contained in this package.

Usage

training(UnivariateData, WaveletCoefficients, SmoothCoefficients, Scales, CoefficientCombination, Aggregation)

Arguments

UnivariateData [1:n] Numerical vector with n values.

WaveletCoefficients

[Scales, n] Matrix with 'Scales' many wavelet scales row-wise with n columns corresponding to the time domain of a time series.

SmoothCoefficients

[Scales, n] Matrix with 'Scales' many smooth approximation scales row-wise with n columns corresponding to the time domain of a time series.

Scales

Number of wavelet levels.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

Aggregation

[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series.

Value

points_in_future

n many values of the time series, for which there is an equation from a prediction scheme.

lsmatrix

Matrix carrying predictive equations associated with a specific value of the time series.

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6:5–12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De-composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217–232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475–484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241–1251. doi:10.1109/TSMCB.2005.850182, 2005.

Examples

```
data(AirPassengers)
len_data = length(array(AirPassengers))
ccps = c(1,1,1)
agg_per_lvl = c(2,4)
# Decomposition
dec_res <- decomposition(as.vector(AirPassengers), Aggregation = agg_per_lvl)</pre>
# Training
trs_res <- training(dec_res$UnivariateData, dec_res$WaveletCoefficients,</pre>
dec_res$SmoothCoefficients,
dec_res$Scales, ccps, agg_per_lvl)
arr_future_points = trs_res$points_in_future
matrix = trs_res$lsmatrix
# Optimization method
weights = regression_lsm_optimization(arr_future_points, matrix)
scheme = prediction_scheme(dec_res$WaveletCoefficients,
dec_res$SmoothCoefficients, ccps, agg_per_lvl)
forecast = weights
```

 ${\tt wavelet_decomposition} \ \ \textit{Redundant Haar Wavelet Decomposition}$

Description

This function decomposes a time series in its wavelet and smooth coefficients using the redundant Haar wavelet transform.

Usage

```
wavelet_decomposition(UnivariateData, Aggregation = c(2, 4, 8, 16, 32), Threshold="hard", Lambda=0.05)
```

Arguments

UnivariateData [1:n] Numerical vector with n time series values

Aggregation [1:Scales] Numerical vector of length 'Scales' carrying numbers whose index is

associated with the wavelet level. The numbers indicate the number of values

39

used for aggregation from the original time series.

Threshold Character indicating if Thresholding is done on the wavelet decomposition or

not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates

no thresholding.

Lambda Numeric value indicating the threshold for computing a hard or soft threshold

on the wavelet decomposition.

Details

The resulting wavelet and smooth coefficients are stored in so called wavelet and smooth part levels. The smooth part level is created from the original times series by aggregation (average). This makes the times series in some sense smoother, hence the naming. Each individual smooth part level can be created from the original time series by aggregating over different number of values. The different smooth part levels are ordered, so that the number of values used for aggregation are ascending. A dyadic scheme is recommended (increasing sequences of the power of two). The dyadic scheme for 5 levels would require $agg_per_lvl = c(2, 4, 8, 16, 32)$. So the first smooth part level would be the average of two points of the original time series, the second smooth part level would be the average of four points, and so on. This averaging is applied asymmetrical. That means, that the result of the average of a sequence of points is obtained for the last point in time of that sequence. So each smooth part level starts with a certain offset, since no average can be obtained for the first particular points in time. The wavelet levels are the differences between the original time series and the smooth levels. The first wavelet level is the difference of the original time series and the first smooth part level. The second wavelet level is the difference of the first and second smooth part level and so on.

Value

List of

UnivariateData [1:n] Numerical vector with n time series values.

WaveletCoefficients

[Scales, n] Matrix with 'Scales' many wavelet scales row-wise with n columns corresponding to the time domain of a time series.

SmoothCoefficients

[Scales, n] Matrix with 'Scales' many smooth approximation scales row-wise with n columns corresponding to the time domain of a time series.

Scales Number of wavelet levels.

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6,5-12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De- composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217-232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475-484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241-1251. doi:10.1109/TSMCB.2005.850182, 2005.

Examples

```
data(AirPassengers)
plot(AirPassengers, type = "1", col = "black")
UnivariateData = as.vector(array(AirPassengers))
dec_res = wavelet_decomposition(UnivariateData, Aggregation = c(2,4))
plot(dec_res$SmoothCoefficients[2,4:length(dec_res$SmoothCoefficients[2,])],
type = "1", col = "blue")
lines(array(AirPassengers)[4:length(dec_res$SmoothCoefficients[2,])],
col = "black")
```

wavelet_prediction_equation

One Step Forecast with Regression

Description

This function delivers the required wavelet and smooth coefficients from the decomposition based on a prediction scheme.

Usage

```
wavelet_prediction_equation(WaveletCoefficients, SmoothCoefficients,
CoefficientCombination, Aggregation)
```

Arguments

WaveletCoefficients

[Scales, n] Matrix with 'Scales' many wavelet scales row-wise with n columns corresponding to the time domain of a time series.

SmoothCoefficients

[Scales, n] Matrix with 'Scales' many smooth approximation scales row-wise with n columns corresponding to the time domain of a time series.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

Aggregation

[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series.

Value

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6,5-12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De- composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217-232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475-484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241-1251. doi:10.1109/TSMCB.2005.850182, 2005.

```
data(AirPassengers)
len_data = length(array(AirPassengers))
CoefficientCombination = c(1,1,1)
Aggregation = c(2,4)
UnivariateData = as.vector(AirPassengers)
# Decomposition
dec_res <- wavelet_decomposition(UnivariateData, Aggregation)</pre>
# Training
trs_res <- wavelet_training_equations(UnivariateData,</pre>
                                       dec_res$WaveletCoefficients,
                                       dec_res$SmoothCoefficients,
                                       dec_res$Scales,
                                       CoefficientCombination, Aggregation)
arr_future_points = trs_res$points_in_future
matrix = trs_res$lsmatrix
# Optimization method
weights = mrf_regression_lsm_optimization(arr_future_points, matrix)
```

```
# Forecast
scheme = wavelet_prediction_equation(dec_res$WaveletCoefficients,
dec_res$SmoothCoefficients, CoefficientCombination, Aggregation)
forecast = weights
```

wavelet_training_equations

Generic Training Scheme for wavelet framework

Description

This function computes the input for the training phase required for one step forecasts. This computational step is required for all one step forecast procedures contained in this package.

Usage

```
wavelet_training_equations(UnivariateData, WaveletCoefficients,
SmoothCoefficients, Scales, CoefficientCombination, Aggregation)
```

Arguments

UnivariateData [1:n] Numerical vector with n values.

WaveletCoefficients

[Scales, n] Matrix with 'Scales' many wavelet scales row-wise with n columns corresponding to the time domain of a time series.

SmoothCoefficients

[Scales, n] Matrix with 'Scales' many smooth approximation scales row-wise with n columns corresponding to the time domain of a time series.

Scales

Number of wavelet levels.

CoefficientCombination

[1:Scales+1] Numerical vector with numbers which are associated with wavelet levels. The last number is associated with the smooth level. Each number determines the number of coefficient used per level. The selection follows a specific scheme.

Aggregation

[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series.

Value

points_in_future

n many values of the time series, for which there is an equation from a prediction scheme.

lsmatrix

Matrix carrying predictive equations associated with a specific value of the time series.

Author(s)

Quirin Stier

References

Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6,5-12, 1998.

Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De- composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217-232. doi:10.1142/S0219691303000153, 2003.

Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475-484. doi:10.1016/S0167-9236(03)00092-7, 2004.

Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241-1251. doi:10.1109/TSMCB.2005.850182, 2005.

```
data(AirPassengers)
len_data = length(array(AirPassengers))
CoefficientCombination = c(1,1,1)
Aggregation = c(2,4)
UnivariateData = as.vector(AirPassengers)
# Decomposition
dec_res <- wavelet_decomposition(UnivariateData, Aggregation)</pre>
# Training
trs_res <- wavelet_training_equations(UnivariateData,</pre>
                                       dec_res$WaveletCoefficients,
                                       dec_res$SmoothCoefficients,
                                       dec_res$Scales,
                                       CoefficientCombination, Aggregation)
arr_future_points = trs_res$points_in_future
matrix = trs_res$lsmatrix
# Optimization method
weights = mrf_regression_lsm_optimization(arr_future_points, matrix)
# Forecast
scheme = wavelet_prediction_equation(dec_res$WaveletCoefficients,
dec_res$SmoothCoefficients, CoefficientCombination, Aggregation)
forecast = weights
```

Index

* Autoregression, One step forecast	onestep, 29	
regression_one_step,33	* One Step Forecasts	
* Cross Validation	<pre>mrf_one_step_forecast, 16</pre>	
mrf-package, 3	* One-step forecasts	
* Differential Evolution	mrf_forecast, 9	
mrf_forecast, 9	mrf_train, 23	
mrf_train, 23	* One-step forecast	
* Evolutionary Optimization	<pre>mrf_elm_forecast, 7</pre>	
mrf_forecast, 9	<pre>mrf_neuralnet_one_step_forecast,</pre>	
mrf_train, 23	13	
* Multi step forecasts	mrf_nnetar_forecast, 15	
<pre>mrf_multi_step_forecast, 11</pre>	<pre>mrf_regression_one_step_forecast,</pre>	
<pre>multi_step, 25</pre>	19	
* Multi-step forecasts	* Ordinary least squares	
mrf_forecast, 9	<pre>mrf_regression_lsm_optimization,</pre>	
mrf_train, 23	17	
* Multilayer Perceptron	regression_lsm_optimization, 32	
<pre>mrf_elm_forecast, 7</pre>	* Regression	
<pre>mrf_neuralnet_one_step_forecast,</pre>	<pre>mrf_one_step_forecast, 16</pre>	
13	<pre>mrf_regression_one_step_forecast,</pre>	
<pre>mrf_nnetar_forecast, 15</pre>	19	
<pre>mrf_one_step_forecast, 16</pre>	* Rolling Forecasting Origin	
* Multiresolution Forecasting	mrf-package, 3	
mrf_forecast, 9	* Rolling forecasting origin	
mrf_requirement, 20	<pre>mrf_rolling_forecasting_origin, 21</pre>	
mrf_train, 23	rolling_window, 34	
* Multiresolution	* Seasonal Univariate Time Series	
mrf-package, 3	Forecasting	
* Nested Cross Validation	mrf-package, 3	
mrf-package, 3	mrf_forecast, 9	
* Neural Networks	mrf_train, 23	
<pre>mrf_elm_forecast, 7</pre>	* Time Series Forecasting	
<pre>mrf_neuralnet_one_step_forecast,</pre>	mrf_forecast, 9	
13	mrf_train, 23	
<pre>mrf_nnetar_forecast, 15</pre>	* Univariate Time Series Forecasting	
<pre>mrf_one_step_forecast, 16</pre>	mrf-package, 3	
* One Step Forecasts, Neural Networks,	mrf_forecast, 9	
Multilayer Perceptron	mrf_train, 23	
<pre>neuralnet_one_step, 28</pre>	* Wavelets	

INDEX 45

```
decomposition, 4
    mrf-package, 3
    prediction_scheme, 30
    training, 37
    wavelet_decomposition, 38
    wavelet\_prediction\_equation, 40
    wavelet_training_equations, 42
* datasets
    entsoe. 5
decomposition, 4
entsoe, 5
model_selection, 6
mrf-package, 3
mrf_elm_forecast, 7
\mathsf{mrf\_forecast}, 9
mrf_model_selection, 10
mrf_multi_step_forecast, 11
mrf_neuralnet_one_step_forecast, 13
mrf_nnetar_forecast, 15
mrf\_one\_step\_forecast, 16
mrf_regression_lsm_optimization, 17
mrf_regression_one_step_forecast, 19
mrf_requirement, 20
mrf_rolling_forecasting_origin, 21
mrf_train, 23
multi\_step, 25
nested_cross_validation, 26
neuralnet_one_step, 28
onestep, 29
prediction_scheme, 30
regression_lsm_optimization, 32
regression_one_step, 33
rolling_window, 34
rolling_window_single, 36
training, 37
wavelet_decomposition, 38
wavelet_prediction_equation, 40
wavelet\_training\_equations, 42
```