Package: mrf 0.1.6

Quirin Stier

mrf: Multiresolution Forecasting

Forecasting of univariate time series using feature extraction with variable prediction methods is provided. Feature extraction is done with a redundant Haar wavelet transform with filter h = (0.5, 0.5). The advantage of the approach compared to typical Fourier based methods is an dynamic adaptation to varying seasonalities. Currently implemented prediction methods based on the selected wavelets levels and scales are a regression and a multi-layer perceptron. Forecasts can be computed for horizon 1 or higher. Model selection is performed with an evolutionary optimization. Selection criteria are currently the AIC criterion, the Mean Absolute Error or the Mean Root Error. The data is split into three parts for model selection: Training, test, and evaluation dataset. The training data is for computing the weights of a parameter set. The test data is for choosing the best parameter set. The evaluation data is for assessing the forecast performance of the best parameter set on new data unknown to the model. This work is published in Stier, Q.; Gehlert, T.; Thrun, M.C. Multiresolution Forecasting for Industrial Applications. Processes 2021, 9, 1697. <https://doi.org/10.3390/pr9101697>.

Authors:Quirin Stier [aut, cre, ctr], Michael Thrun [ths, cph, rev, fnd, ctb]

mrf_0.1.6.tar.gz
mrf_0.1.6.zip(r-4.5)mrf_0.1.6.zip(r-4.4)mrf_0.1.6.zip(r-4.3)
mrf_0.1.6.tgz(r-4.4-any)mrf_0.1.6.tgz(r-4.3-any)
mrf_0.1.6.tar.gz(r-4.5-noble)mrf_0.1.6.tar.gz(r-4.4-noble)
mrf_0.1.6.tgz(r-4.4-emscripten)mrf_0.1.6.tgz(r-4.3-emscripten)
mrf.pdf |mrf.html
mrf/json (API)

# Install 'mrf' in R:
install.packages('mrf', repos = c('https://quirinms.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/quirinms/mrfr/issues

Datasets:
  • entsoe - Entsoe DataFrame containing Time Series

On CRAN:

4.28 score 2 stars 19 scripts 239 downloads 15 exports 77 dependencies

Last updated 3 years agofrom:c84a61e9db. Checks:OK: 1 ERROR: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winERRORNov 20 2024
R-4.5-linuxERRORNov 20 2024
R-4.4-winERRORNov 20 2024
R-4.4-macERRORNov 20 2024
R-4.3-winERRORNov 20 2024
R-4.3-macERRORNov 20 2024

Exports:mrf_elm_forecastmrf_forecastmrf_model_selectionmrf_multi_step_forecastmrf_neuralnet_one_step_forecastmrf_nnetar_forecastmrf_one_step_forecastmrf_regression_lsm_optimizationmrf_regression_one_step_forecastmrf_requirementmrf_rolling_forecasting_originmrf_trainwavelet_decompositionwavelet_prediction_equationwavelet_training_equations

Dependencies:askpassclicodetoolscolorspacecurlDEoptimDerivfansifarverforeachforecastfracdiffgenericsggplot2glmnetgluegreyboxgtablehttrisobanditeratorsjsonlitelabelinglatticelifecyclelimSolvelmtestlpSolvemagrittrMAPAMASSMatrixmgcvmimemonmlpmunsellneuralnetnlmenloptrnnetnnfornumDerivopenssloptimxpillarpkgconfigplotrixpracmaquadprogquantmodR6RColorBrewerRcppRcppArmadilloRcppEigenrlangscalesshapesmoothstatmodsurvivalsystexregtibbletimeDatetseriestsutilsTTRurcaurootutf8vctrsviridisLitewithrxtablextszoo

The mrf package

Rendered frommrf.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2021-08-27
Started: 2021-03-04

Readme and manuals

Help Manual

Help pageTopics
Multiresolution Forecastingmrf-package
Redundant Haar Wavelet Decompositiondecomposition
Entsoe DataFrame containing Time Seriesentsoe
Model Selection for Multiresolution Forecastsmodel_selection
Forecast with Extreme Learning Machinesmrf_elm_forecast
Multiresolution Forecastmrf_forecast
Model selection for Multiresolution Forecastsmrf_model_selection
Multiresolution Forecastmrf_multi_step_forecast
One Step Forecast with Neural Networkmrf_neuralnet_one_step_forecast
Forecast with nnetarmrf_nnetar_forecast
mrf_one_step_forecast Step Forecastmrf_one_step_forecast
Least Square Method for Regressionmrf_regression_lsm_optimization
One Step Forecast with Regressionmrf_regression_one_step_forecast
Multiresolution Forecast Requirementsmrf_requirement
Rolling forecasting origin for Multiresolution Forecastsmrf_rolling_forecasting_origin
Multiresolution Forecastmrf_train
Multi Step Forecastmulti_step
Nested cross validation for Multiresolution Forecastsnested_cross_validation
One Step Forecast with Neural Networkneuralnet_one_step
One Step Forecastonestep
One Step Forecast with Regressionprediction_scheme
Least Square Method for Regressionregression_lsm_optimization
One Step Forecast with Regressionregression_one_step
Rolling forecasting origin for Multiresolution Forecastsrolling_window
Rolling Window for Multiresolution Forecastsrolling_window_single
Generic Training Scheme for wavelet frameworktraining
Redundant Haar Wavelet Decompositionwavelet_decomposition
One Step Forecast with Regressionwavelet_prediction_equation
Generic Training Scheme for wavelet frameworkwavelet_training_equations